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Canonically quantizing in the temporal gauge Ao = 0, we study the symmetry properties of the gauge

theory vacuum under time-independent gauge transformations. A quantum-electrodynamics-like unconfined

phase exhibits spontaneously broken symmetry under gauge transformations that do not vanish at spatial

infinity. In a confining phase this symmetry should be restored. When in the unconfined phase, assuming it

exists, of a theory possessing topologically nontrivial gauge transformations, the physical Hilbert space will

admit a discrete symmetry operation related to a tunneling process between discrete classical vacuums. In the

confined phase, this symmetry becomes part of a continuous gauge symmetry. We discuss in detail the

solvable theories of free photons and the two-dimensional Schwinger model. We also give some nonrigorous

arguments that the phase 8 associated with the tunneling process may have no physical significance in four-

dirnensional space-time.

I. INTRODUCTION

A theory of quarks interacting with non-Abelian
gauge fields has recently become a popular can-
didate to describe strong-interaction dynamics. '
This provides the pleasing possibility that all
particle interactions from gravity to the nuclear
force are gauge theories. As usually discussed,
the strong-interaction theory differs in one im-
portant respect from other applications of field
theory in that no free particles correspond di-
rectly to the fundamental fields appearing in the
Lagrangian. Indeed, the quarks and vector "glu-
ons" are hoped to be "confined" in the physical
hadrons which are gauge-singlet bound states.

Little evidence exists that the no&i-Abelian gauge
theory does indeed confine. Renormalization-
group arguments yield a large effective coupling
for large quark separation. ' This suggests that
perturbation theory may break down at large dis-
tances, which would explain the lack of perturba-
tive evidence for confinement. Eliminating ultra-
violet divergences with the artifice of a lattice,
Wilson has investigated the strong-coupling limit
of gauge theories. ' In this limit the theory be-
comes one of quarks connected by strings, and
confinement is natural. Using mean-field-theory
arguments, Balian, Drouffe, and Itzykson have
suggested that in enough space-time dimensions
gauge theories undergo a phase transition as the
coupling constant is varied. ' This transition is
between the confined strong-coupling phase and
a quantum-electrodynamics-like unconf ined phase.
Migdal has given approximate arguments that four-
dimensional space-time represents a critical case
where Abelian theories undergo this transition
while non-Abelian ones remain confined. '

Recently Polyakov suggested that certain clas-
sical solutions to non-Abelian gauge theory in

Euclidean space-time may have some bearing on
confinement. ' Qualitatively, such configurations
may result in a disordering forcing the theory in-
to the strong-coupling phase. These "pseudopart-
icle" solutions are indicative of a tunneling pro-
cess between distinct classical ground states of the
theory in Minkowski space and formulated in the
temporal gauge A, = 0.' In this paper we use canon-
ical techniques to study further the consequences
of this tunneling for the confined and unconfined
phases.

The unconfined phase of a gauge theory is sig-
naled by the noninvariance of the vacuum state
under gauge transformations that do not vanish
at spatial infinity. This concept has been exten-
sively discussed previously in the Lorentz gauge
B„A,=0. We reformulate this idea in the tem-
poral gauge. The massless vector mesons are
Goldstone bosons in this phase of spontaneous
symmetry breaking. In non-Abelian gauge theories
there are gauge transformations that change the

topology of the classical vacuum. These generate
a discrete symmetry in the physical Hilbert space
of the unconfined phase. Unfortunately, we find
no obvious contradiction in having such a sym-
metry in the unconfined phase; thus, we do not
have an argument for confinement.

In the confined phase of a theory we argue that
symmetry under all gauge transformations will
be restored. Then the topologically nontrivial
gauge transformations become part of a contin-
uous symmetry, and the analogy to a tunneling
phenomenon becomes obscure.

In Sec. II we canonically quantize the solvable
theory of free photons in the temporal gauge. We
construct operators that generate time-indepen-
dent gauge transformations and study their effect
on the vacuum. In Sec. IH we investigate SU(2)
non-Abelian gauge theory where topologically non-
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trivial gauge transformations exist. Section IV
discusses the perturbation-theory vacuum and cor-
rections necessary to take account of the tunneling
process. In Sec. V we use the Schwinger model
of two-dimensional quantum electrodynamics as
an example of a confined theory with nontrivial
topological properties. Section VI gives a non-
rigorous discussion on the tunneling process and
background electric fields. Here we argue that
the phase 0 encountered in the tunneling process
may have no physical effects in four-dimensional
space-time. Section VII contains some concluding
remarks.

II. FREE PHOTONS IN THE TEMPORAL GAUGE

In this section we study the canonical quantiza-
tion of free photons in the temporal gauge A, =O.
This section is essentially a reworking in this
gauge of the work of Brandt and Ng and Ferrari
and Picasso. ' %'e begin with the Lagrangian den-
sity

satisfies the restriction

V Eig)=0. (2.10)

A»(x, t}=

d3k

(2 )'2k

~$A, (k, t)e' *,
(2.11)

where k, =— ~K~. Equations (2."t) and (2.8) now be-
come

BoA;=E»,

8 «,-= -PI')~A~,

(2.12)

(2.13)

where I',-& is the transverse projection operator

P,; =6;;—k«k«/k . (2.14)

All operators that respect Gauss's law, i.e., those
that commute with V' K, will leave us in the sec-
tor of physical states.

To find the spectrum of this theory we go to mo-
mentum space,

«C=-gE „Egp

where

(2.1) The physical constraint in Eq. (2.10) reads

(1-P4EJ
I &) =0. (2.15)

(2.2)

The dynamical coordinates are A „ i = 1,2, 3, and
their conjugate momenta are just the components
of the electric field (2.16)

Creation and destruction operators for physical
photons are defined by

P,,A, =a»(K, t)+a»( f, t), -
P„E= -tk, [a,(k, t) —a', (-K, t)] .

~ =Eo~= ~o~~ =« .
8(B,A,.&

The magnetic field is given by

F «='»A 'A»-='«»F— a

gx A.

(2 3)

(2.4)

Clearly we have

P; -a)=u).

Equations (2.12) and (2.13) become
800 j ~ZkoQg (2.18)

The Hamiltonian density is

X=E«B A« —OZ=~E«+ ,'E««E«« —--,'(E —+82). (2.5)

The canonical equal-time commutation relations
are

[E,(x, t},A«(y, t)]=-i6,J6 (x —y). (2.6)
0

By commuting operators with the Hamiltonian we
obtain some of the equations of motion (H= J d'xÃ)

B,A, = t[H, A, ]=E, , (2.7)

BOE» =i,[H, E;]= B«E«» = (V x 8)» . ( 2.8)

Note that from the Hamiltonian we cannot ob-
tain Gauss's law, V'. E=O, because it does not
involve time derivatives Rath. er, Eq. (2.8) only
implies

B,(~ E}=O=t[H, ~ E]. (2.9)

This means that V' K and H can be simultaneously
diagonalized. We say a state ~g) is physical if it

which implies

a«(K, t)=e "0«a, (K) . (2.19)

The commutation relations in Eq. (2.6) imply

[a»(k), a»«(P)]=P «2«k (02»)»' 6(3k —k'). (2.20)

Straightf orw ard manipulation gives
d~@

+ E (R«)( 1P);«S«(-k}, (2.21)

a, io) =0,
(1 -P)«&E& io) =0,
&0 io&=1.

(2.22)

(2.23)

(2.24)

From Eq. (2.21) it is easily seen that this is the

where an infinite zero-point energy has been dropped.
The physical vacuum ~0) is defined uniquely to a
phase by
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lowest energy state satisfying the constraint Eq.
(2.i6).

The temporal gauge still leaves the freedom of
performing time-independent gauge transforma-
tions of the form

A,.(x) -A, (x)+ v,.A(x), (2.25)

where A(x) is an arbitrary function of the space
coordinates. US1Qg the caQOQlcal commutation
relations, we can easily construct an operator
producing this transformation,

UA,.U-'=A,.+ V,.A,

V= exp i d'xE, (x)V, A(x.). (2.26)

We define a "local" gauge transformation to be one
for which A(x) vanishes at spatial infinity rapidly
enough that we can neglect surface terms and par-
tially integrate Eq. (2.26) to obtain

U=exp -i d'@AD'. E (2.27)

A(x) = Xx.

such that

A. ; A. ;+ X5;

(2.29)

(2.39)

The important feature here is that we change A,
by a finite amount over an infinite volume.
Equation (2.26) still gives the operator that pro-
duces this transformation

U=exp A dsxE (2.31)

%e wish to stu. dy the action of this operator on
the vacuum state. It is convenient to introduce
at this point an infrared cutoff & and study

r&(&) =e (& '&) d*»:.

In Appendix A we show

By virtue of Gauss's law, Eq. (2.10), V E van-
ishes oQ phys1cal states. In particular, we have

UIo&= Io&.

Thus, the vacuum is invariant under local gauge
transformations. Since V'. E is effectively the
generator of such transformations, those operators
which respect Gauss's law are the set of gauge-
invariant operators. Any gauge-invariant oper-
ator will take a. physical state into a physical
state.

%e now turn to study gauge transformations
that do not vanish at infinity. In particular, coa,—

Sldel

(oI(&(&)ll»=«& — .) (2.33)

As ~-0, U becomes a symmetry operation that
commutes with the Hamiltonian. However„Eq.
(2.33) shows that the vacuum does not respect the

symmetry. Indeed, if we generate our Hilbert
space by applying to the vacuum gauge-invariant
field combinations smeared with test functions
of compact support, then U takes the vacuum out
of the Hilbert space. Thus we have an example
of spontaneous symmetry breaking. As it is a
continuous symmetry, we expect massless Gold-
stone particles, a role played by the physical
photon. More precisely, for & small but nonvan-
ishing, fj(~) IO&

=-
I

«& is a state in t e physicai Hii-
bert space because the physical constraint com-
mutes with U(e) and e ' " is a suitable test func-
tion. This state has an energy expectation arbi-
trarily close to the vacuum energy if z is made
small enough, yet its overlap with the vacuum is
also arbitrarily small. The presence of this state
showers that there cannot be a gap in the spectrum
of the theory and therefore there is a rhassless
particle, the photon.

Although o( in Eq. (2.29) can take on three val-
ues, only the two transverse photons represent
Goldstone bosons. To see this, apply the cutoff
keeping the gauge transformation purely longitud-
inal

U«&i ,a='*~,», I~( )&-"'*]I. (2.34)

For finite e. we can partially integrate and apply
the constraint condition to obtain

U, Io&= Io&, (2.35)

( 2+ p2)1/2 &

with p an arbitrary parameter. This is an ex-
ample where A(x) goes to a direction-dependent

so we do not obtain longitudinal massless part-
icles.

Note that the effect of the gauge transformation
with A(x) given as in (2.29) is to change the fields
by a nonzero amount over an infinite volume of
space. In fact, if A goes as some positive power
of Ixl for»rge Ixl then this same result will
hold —the transformation takes the vacuum out
of the Hilbert space. But if A is chosen to go to
zero as some negative power for large Ix I, the
vacuum will respect the corresponding gauge sym-
metry. For reasons to become clear in Sec. III,
it is convenient to consider A(x) which are on the
borderline between these two cases. For example,
consider
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constant as Ix I goes to infinity. In Appendix A

we shower for this A

With this change I'„„transforms as

(3.9}
(0 i Ui 0)= exp(-X' x 0.55. . .) . (2.37)

Again, this can be interpreted as an indication of
the Goldstone phenomenon because the vacuum is
not invariant.

We have argued that the massless vector mesons
of a gauge theory quantized in the temporal gauge
are Goldstone bosons associated vrith spontaneous-

ly broken gauge invariance. If ere desire a gauge
theory vnth confinement and. no massless vector
gauge particles, this symmetry should be re-
stored. We expect that gauge transformations
that change the gauge field a finite amount over
an infinite volume are symmetries of the con-
fined vacuum but not in the unconfined case. Thus
the symmetry properties of the vacuum provide a
criterion for confinement.

III. SU(2) GAUGE THEORY

For reasons of simplicity ere discuss the gauge

group SU(2) rather than the physically relevant
SU(3). We also ignore here the |quark fieMs on

the assumption that confinement, if it occurs,
should appear in the pure gauge field sector of
the theory. Thus we study the Lagrangian (re-
peated indices are summed}

(s.l)

Given G,~(g) some matrix representation of
SU(2), we can consider fields that transform un-
der the above gauge transformation as this repre-
sentation

4i(x) -G;&(g(x))4&(x) . (3.10)

G~~(r) =[exi (i~ v)]&&, (3.12)

where &,&
are matrices generating the representa-

tion and satisfying

[v",2] =icj ~&v&. (3.13)

It is well known that one can define a covariant
derivative of the field Q

(DpQ)( =B„fj+ 58k„vg~p (3.14)

and that this transforms under gauge transforma-
tions as

(Dp4). G&g(D-p4)g ~

It is easily checked that

[Dq, D„]Q = i eEq"„u"Q.

(3.15)

(3.16)

For I"„"„the relevant representation. is the ad-
'joint representation given by

If SU(2) elements are parameterized in the form

~&&'O/2 (s.ll)
one can write

The index o'. runs from one to three, z + is the
totally antxsymmetrxc tensor math z' '= j. and e xs

the coupling constant of the theory. It is often
convenient to use a matrix notation vrith

(3.3)

Vs =- SCa ~ as
Sy

Consequently, me have

(3.17)

(3.18}

A„=Tr(o'A„), E„„=Tr(s'E„„), (3.4} (D„E„p) =B~E„"p —ee "~~A8„EJp. (3.19)

where o are the 2 &2 Pauli matrices satisfying

[o",o'] =2ie '&o&,

[&~ &8] 25as

In this matrix notation ave have

E„„=sp,—s~„+is[a„,A„],

(3.5)

(s.e)

gTr(E„„E„). - (3.V}

The gauge invariance of this theory is described
by considering an arbitrary mapping g(x) of space
into the group SU(2). Then the Lagrangian density
Is invariant under

+at pCf —g Ct,

Oi i

The Hamiltonian density is

(3.21)

(3.22)

The classical Euler-I. agrange equations take the
simple form

(3.20)

We now go to the temporal gauge A", =0 and pro-
ceed to quantize the theory. We work at a, fixed
t, ime and suppress time dependence in vrhat fol-
lovrs. The dynamical variables are A, and their
conjugate momenta are

&p-gag '+ (s~g)g '. — (3.8)
Using the canonical equal-time commutation re-
lations
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[EP(x),8~8(y)] = i-&,P"s&'(x - y) (3.23)

in eommutators with the Hamiltonian, one ean ob-
tain the equations of motion

g +Of gX

'OEP = (&~~i() ~ (3.25)

A)(x) g(x)A;(x)g '(x) +—[e,g(x)]g '(x). (3.28)

We wish to construct a unitary operator that
causes this transformation

(3.29)

Parameterize g(x) as

g(x) = exp i — &u(x)
2

(3.30)

As in the Abelian case, Gauss's law (DE,)"=0
does not follow from the Hamiltonian; rather, we
only obtain

(3.26)

Again this means that D;F; can be simultaneously
diagonalized with the Hamiltonian; so, we define
physical states by

(3.27)

A vacuum can be defined as the lowest eigenstate
of the Hamiltonian under this constraint condition.
With e nonzero we have an interacting theory, and
hence little is known about this state.

In the temporal gauge we are still left with the

possibility of performing time-independent gauge
transformations. These are realized by consi-
dering a g(x) in Eq. (3.8) that depends only on
space coordinates

times an arbitrary mapping g(x) covers the group
SU(2) is given by"

(3.35)

By virtue of the constraint condition in Eq. (3.2'7)

we have

UI0& = Io&, (3.38)

and the vacuum is invariant under such transfor-
mations. This is just the situation encountered
for local gauge transformatjons in the Abelian
theory discussed in See. II.

Class (Ib) represents a new situation not occur-
ring in the Abelian theory. Consider a gauge trans-
forrnation with

This number is an integer for cont)nuous g(x) that
go to the identity as Ix I

goes to infinity. We now

consider the following three categories of gauge
transformations:

(Ia) This class consists of those g(x) where g(x)-1 as lx I
-~ and where the expression in Fq.

(3.34) vanishes.
(Ib) Here we include thoseg(x) withg(x)- I as

~ but where the expression ln Eq. (3.34) ls
nonvanishing. We will see that this class includes
all "topology-changing" gauge transformations.

(II) Finally we lump together all gauge transfor-
mations that do not leave A, alone at spatial in-
finity, i.e. , g(x) does not go to unity as Ix I -~.

For gauge transformations in class (Ia) we can
partially integrate the integral in Eq. (3.31) to
obtain

I" =. exp —— cPx 8&"(D, m)
Of (3.31)

We show in Appendix 9 that with u defined in such
a way, an operator U that implements the desired
gauge transformation is where p represents an arbitrary scale parameter.

As Ix
I

goes to infinityg(x) goes to the identity
element of SU(2). An &u"(x) that gives this g(x) is

where we have made the formal definition 'X2 p2 1/2 of (3.38)

Note the similarity between Eqs. (3.31) and (2.2V).
Because the Hamiltonian is gauge invariant, we
have

(3.33)

In the Abelian case we divided the time-indepen-
dent gauge transformations into two types, those
that left A(x) unchanged at infinite IxI and those
that did not. For the SU(2) case it is useful to
subdivide the first class further. The number of

Note that this has a singularity at the origin. In-
deed, topological arguments prove that no con-
tinuous &u (x) that vanishes at infinity can give the
g(x) in Eq. (3.3'7). This is because three-dimen-
sional space with the point at infinity is topolog-
ically equivalent to the surface of a sphere in four
dimensions, and Eq. (3.3V) represents a homo-
topically nontrivial mapping of this sphere into the
group manifold of SU(2) (also the surface of a four-
dimens ional sphere).

To treat the singularity at the origin in Eq. (3.38)
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we consider g(x) as the product in Eq. (3.37). The
factor of (-1) cancels out in the gauge transfor-
mation of A;. We let T represent the unitary op-
erator associated with this transformation; by
Eq. (3.31) we have

2riT~ exp ~ d XEg ~g l 2 2%//2

I.et us now consider a continuous deformation
of the topologically nontriviaig(x) in Eq. (3.37)
to a transformation in class (Ia). The easiest way
to do this is to introduce a parameter s that runs
from zero to one and consider

g(x, s) = exp(IIisa, )

O' ' Xo
exp 277'l8 ~ g2 (x +py

(3.43)

q =—,d'x e;IITr[A;(38@4~ +2ie»4+1)] (3.41)

is conjugate to T in the sense that

(3.42)

This integral represents a coordinate in which the
theory is periodic, and T is the symmetry oper-
ator that generates translations in this periodic
coordinate.

We refer to this as a topology-changing gauge
transformation. All homotopically nonequivalent
gauge transformations can be obtained up to a
tl'allsfol'IIla'tloIl 111 class (Ia) by takillg llltegel' pow-
ers of T or its inverse. Changing the scale pa-
rameter p effectively amounts to making an addi-
tional local gauge transformation. As physical
states are not affected by such transformations,
the action of T on physical sta, tes is independent
of p.

This operator changes the fields by a, finite
amount over a region of size parametrized by p.
Thus, it should not take us out of the physical
Hilbert space. Also, since T commutes with the
Haxniltonian, we expect the vacuum to be an ei-
genstate of T

(3.40)

where the eigenvalue is of unit magnitude because
T is unitary. Since T is a gauge transformation,
if we build up our Hilbert space using gauge-in-
variant operators on the vacuum, all states thus
genex'ated will be eigenstates with the same eigen-
value of T. Indeed, Hilbert space mill break up
into sectors labeled by 8, each built on a vacuum
which is the lowest energy eigenstate of the Ham-
iltonian for a given value of 8. In Sec. VI we will
attempt to give a physical interpretation for 8 and

will present arguments that, in three spatial dimen-
sions all the 8 vacuums a.re physically equivalent.
Note that this discussion of Hilbert-space sectors
labeled by a parameter 8 is independent of wheth-
er the theory is confined or not.

In Appendix C we show that the quantity

At s = 1 this is the transformation in Eq. (3.3V)

while at s =0 for all x it is the identity element of
SU(2). The important point to note is that for in-
termediate s, g{x,s) does not go to the identity
element at ~x

~

=~. Thus this continuation of a.

transformation in class (Ib) to class (Ia.) requires
that the transformation at an intermediate stage
be in class (II). By the topological arguments men-
tioned earlier, this is a general property of any
continuation from class (Ib) to (Ia).

This leads us naturally to a study of class (II)
gauge transformations. Based on the results of
the previous section, we expect the behavior of the
states under these transformations to be rather
different in the confined and unconfined phases.
Because a class (II) transformation has g(x) 41 at
~x

~

=~, it changes the fields A, by a nontrivial
amount over an infinite volume. In the unconfined
phase where A& is associated with Goldstone vec-
tor mesons we expect such a transformation to
take us out of the origina, l Hilbex t space, as ex-
hibited for the Abelian theory in the last section.
This means that in the continuation indicated in

Eq. (3.43) the intermediate values of s give an
operator that takes us out of the Hilbert space.
In the unconfined phase there is no way to continue
between operators corresponding to gauge trans-
formations in class (Ia) and (Ib) while staying with-
in the physica, l Hilbert space. In this case the op-
erator T represents a discrete symmetry much
like that encountered by a particle in a periodic
potential.

The situation is quite different in the confined
phase. Here we do not want massless vector me-
sons, so, as discussed in the last section, we ex-
pect the broken symmetry undex' transformations
in class (II) to be restored. Thus class (Ia) and
class {Ib) operators can be continued into one an-
other without leaving the confined Hilbert space.
The discrete syxnmetry becomes a continuous sym-
metry and the periodic-potential analogy is lost.
Indeed, in lattice gauge theory, where the con-
fined phase is the natuxal one, topology-changing
gauge transformations seem to play no important
role. In Sec. V we study the above ideas in the
Sehwingex" model.
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IV. THE PERTURBATION-THEORY VACUUM I~&PT T"Io&PT (4.6)

Classically, the lowest-energy configuration
for the gauge-theory Hamiltonian in Eq. (3.22) has

F„„=Oeverywhere in space. When E „=0, A,
can differ only by a gauge transformation from
A, =0. Because this SV(2) gauge theory has top-
ologically inequivalent gauge transformations,
there are topologically inequivalent classical
ground states. The Belavin et al."pseudopart-
icle solution represents a finite-action path con-
necting these inequivalent configurations. In the
quantum theory, it has been argued, this provides
a path for quantum-mechanical tunneling between
the various classical "vacuums. "

Of course I"„„=0does not represent an accept-
able quantum state because Fo,. and E,, do not
commute. In doing perturbation theory, one starts
with a vacuum state that is the true ground state
of the theory obtained by setting the coupling con-
stant e equal to zero. In this section we construct
this state and study the action of the operator T
upon it.

Upon turning off the coupling, the non-Abelian
theory of the preceding section becomes a direct
product of three independent Abelian gauge the-
ories of the type discussed in Sec. II. Just as in
that section we go to momentum space

A;(x, t) = „, g.(k, t)e"",

E, (x, t) =
(2
„E,(k, t)e'~'*,

(4.1)

and we normalize

PT&0 I 0&PT

This state satisfies

„&oip,,At io)„=o.

( 4.4)

(4.5)

It represents an improvement over the classical
ground state A,- =0 because some small quantum
corrections are included.

We now define the "topologically distinct" per-
turbation-theory vacuums by the formula

and form transverse creation and destruction op-
erators at t = 0,

P,~A)(k, 0) =at,. (k)+ at,.~(-k),
(4.2)

P&&E, (k, 0) = -iko[a, (.k) —a™t(—k)],
where P,-~ is the transverse projection operator
of Eq. (2.14). The perturbation-theory vacuum

io)PT is defined by

a, (k) I0) =0,
(4 3)

[D,E&(x)] io)PT =0,

where T is the operator of Eq. (3.39) in the last
section and n is any integer. Since T commutes
with the Hamiltonian, these states all have the
same expectation value for the energy

pT&7l IH I PE)pT = pT&0 IH I0)pT (4.7)

Eigenstates of T are easily found from a linear
combination of these states

I
e&„=cg e-'"'I&&„,

(4 3)

where C is a normalization factor. Because the
true vacuums of the theory should be eigenstates
of both T and H as discussed in the last section,
these states

I 8&PT should represent a better ap-
proximation to the interacting vacuums than the
states In&PT.

The state In&PT differs from the state
I 0)» only

by a finite gauge transformation in a region of
space characterized by the scale parameter p.
Consequently, the overlap between these states
should be nonvanishing. We define

P T&o I 1&PT = PT&o I
T

I o&P T =-1'. (4.9)

Calculation of this overlap is complicated by the
nonlinear constraint condition in Eq. (4.3). We
do expect the magnitude of y to be less than unity
because T is unitary, and we expect y to vanish
exponentially in e ' as the coupling is taken to
zero because the displacement of A,- by T is of
order e '.

The state io)» is an approximation to the vacu-
um of the unconfined phase of a gauge theory. As
such it is not invariant under gauge transforma-
tjons that do not vanish at spatial infinity. The
states In&PT do not differ from io)» outside a
region of size p and no combination of them can
form a state invariant under such gauge trans-
formations. Thus the states

I 6&PT still represent
an approximation to the vacuum of the unconfined

gauge theory. Unfortunately we conclude that if
confinement is to occur in non-Abelian gauge
theories, it does not arise in a purely kinematic
way from a mixing of the states in&PT

V. SCHWINGER MODEL

In Sec. II, free Abelian gauge theory was con-
sidered as a solvable example of an unconfined
theory to show that gauge transformations not
vanishing at spatial infinity were not operators in
the physical Hilbert space. The Schwinger model
provides a solvable confined theory that also pos-
sesses topologically nontrivial gauge transforma-
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tlons. " Here we discuss the canonical quantiza-
tion of this model in the temporal gauge and show
that gauge transformations that do not vanish at
infinity remain operators in the Hilbert space.
As a consequence, there is a continuous symmetry
connecting the topologieally tx'ivial and topology-
changing gauge transformations.

The model is defined from the classical Lagran-
glRn density

so(&p' jo)-= o (5.11)

so, V,E —j0 and the Hamiltonian can be simul-
taneously diagonalized. We impose that any phy-
sical state ~P) satisfy

(v,~-~;) ls) =o. (5.12)

As in previous sections, Gauss's law does not
arise from this procedure since it does not involve
time derivatives. Rather, we find

2 =-~ E~,E~„+2)}) f p+j~Aq, (5.1)
Consequently, fox' physical states the electric field
is determined in terms of j,(x),

i p =&Apl

F~, =8~A, —8+p, (5.3)
~(x)l~& = &(--)+ (5.13)

[~u )'].='g~' (5 4)

Rnd p ls R two-component spinor field. The 2x2
Dirae matrices y„satisfy

where we have allowed for a possible applied field
at spatial infinity. Note that for physical states
the connection between j& and E takes the simple
form

The electric field is defined by 2p lk) &pvsuE lk) ~
(5.14)

(5.5)

In the temporal gauge the Lagrangian reduces to

& = -.(ski)' +42&A' j~x ~- (5.6)

Canonical procedures give the Hamiltonian density

where c& is antisymmetric with e, =1.
We now consider the time-independent gauge

transformation characterized by the function A(x)

A, —UA1U =A1+ —V1A,
1

(5 15)

X= PE —qP jy]V'tt)+j1A. 1. (5.7) Uqg -& e-fA(r)y(x)

As in previous sections we work at R fixed time
and obtain the qua, ntum theory by imposing the
commutation relations

[S(x),X,(y)] =-f6(x- y),

[t( (x) Psb)].=5 s5(x-y).
(5 6)

To avoid ambiguities in defining products of fieMs
at the same point we replace Eq. (5.2) with

j,(x) = ey t(x+ e))C)(x)e""~",

j,(x) = e T)(x+ ))i'( )e x""P)

(5.10)

where c is to be taken to zero at the end of any
calculation. The constant subtracted from j,(x) is
chosen somewhat arbitrarily by requiring the defi-
nition to correspond to normal ordering with re-
spect to a massless free Dirac field. A similar
point separation can be used to define the Hamil-
tonian density.

The equations of motion follow by commuting
operators with the Hamiltonian to obtain their time
derivatives. This gives

The unitary operator U effecting this transforma, -
tion is

2U= exp—
„8 dx(Ev, A+j,A) . (5.16)

Ulq& = exp -(~(--)[A(-)-A(--)]+@A(-)j ly),8
(5.17)

Q=Z(~)-E(-~) = dxj,

measures the total charge of the state. For a
deflnlte charge (usually zero) Rnd R given Rpplled
field E(-~), this operator just multiplies physical
states by a phase.

The above discussion only assumed that A(+~) is
finite. This agrees with oux' argument that for a
confined theory, symmetry under gauge trans-
formations not vanishing at infinity will be re-
stored. A topology-changing transformation is

If A(x) vanishes at x=+~, then this expression
ean be partially integrated and as in previous sec-
tions the constraint condition requires all physical
states to be invariant under this operator. If A(x)
remains finite at infinity, then a surface term
survives the partial integration, and we obtain on

physical states
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defined by

A(~) -A(-~) = 2mn,

where n is an integer. We see that such trans-
formations can be continuously deformed into one

another by considering noninteger pg

To define a paxameter 9 as in the previous sec-
tion, we introduce a particular topology changing
transformation with g = I,

pendent electric field is a solution to the classical
gauge-theox'y equations. %'e wish to insert such a
solution into the expression for T in Eq. (3.39),
thus obtaining a classical value for the pax'ameter
9.

To x'emove any infrax'ed problems we consider
space to be restricted to the interior of a sphere
of radius 8» p. Partially integrating the expres-
sion in Eq. (3.39) and using Gauss's law D,E, , =0,
we obtain a simple expression for T as a surface
integral over this sphere

T = exp — dx(EV, A +j OA)
e

where p is a scale pax'ameter. On physical states
we find

(5.21)

(6 l)

where r~ is a unit vector in the radial direction.
Inserting a constant F, gives

(6.2)

(5.22)
ox'

Thus 9 is directly related to the applied field
E( oo),

The exact solution to this model has been ex-
tensively discussed elsewhere. " The field E(x)
is a free hoson field of Qlass 8/0 7f . This hoson

may be thought of as a bound state of a fermion-
antifermion pair. The spectrum of the theory is
actually independent of 9; however, this is not a,

general property in two dimensions because in the
massi, ve Schwinger model the applied field is not
completely shielded and has striking physical con-
sequences. '2 The presence of a fermion mass
term does not alter our conclusions on gauge
transformations that do not VRnish Rt lllfinlty.

The applied field as measured by 9 is not, in

general, equal to the average electric field. This
is because the vacuum is effectively a dielectric
medium and will be polarized by any applied field.
For the massless Schwinger model this polariza-
tion completely shields the background field, and

the average field is zero."

VI. BACKGROUND ELECTRIC FIELDS

In the previous section we saw that for the
Schwinger model the phase 9 represented a
possible applied electric field. In this section we
speculate on whether this concept can be extended
to the foux'-dimensional theory discussed i.n Sec.
III. 'Ne first study the unconfined phase and then
become even more speculative with the confined
phase.

If an unconfined phase of the four-dimensional
SU(2) gauge theory exists, we might expect the
theory to have a classical limit. A space-inde-

up to a multiple of 2m. To minimize the classical
energy density —,'E,. E, for a given value of 9 we
choose

which gives

(6.5}

showing that a background electric field can indeed
give a classically nonvanishing 9. Note that the
solution we are conslderl. ng 1s not gauge-lnvar1ant.
The quantum ground state must involve a super-
position of states corresponding to this solution
and all local gauge t;ransfox'mations of it.

As R is taken to infinity with 8 fixed, the back-
ground field E will go to zero as g '. This prop-
ex'ty is essential because in an infinite volume a
finite uniform field can produce virtual pairs of
charged particles and separate them to a large
enough distance that their electrostatic energy
allows them to become real. In non-Abelian gauge
theories there are massless gauge bosons carry-
ing charge e. In a finite volume of dimension A

they have an effective mass of order R ', conse-
quently, for stability, E must go to zero at least
as fast as R ', consistent with Eq. (6.5).

Since 9 represents an angle, it can be restricted
to the range -g &9 ~m. Fox consistency of our in-
terpretation, 9 of order g should correspond to a
stable field configuration. Therefore, we need to
considex electric fields as large as

E = e/8n'R



Placing a circular parallel-plate capacitor of
radius 8 ln81de our universe Rlso of rRdius g, Rnd

charging it with ae on the plates, we see that
whenever the applied external field satisfies

(6.V)

the plates will be attracted to each other. This
suggests that such a configuration is stable. The
compatability of Eq. (6.6) with Eq. (6.7) shows no
lnconslsterlcy ln our ldentlflcRtlon between (9 Rnd R

background field; however, the puzzling mismatch
of the maximum electric field with the field giving
9 =m' suggests that (9 alone is not sufficient to des-
cribe the configuration. These quantities match
perfectly in two-dimensional electrodynamics.

If our identification of 8 as a manifestation of a
background electx'ic field is correct, then we con-
clude that as R goes to infinity, i.e. , as the in-
frared cutoff is removed, measurements probing
R finite volume of space will be insensitive to the
value of 8. Indeed, (9 represents a global property
of space and has no micx oscopic consequences.
This is in sharp contrast to the massive Schwinger
model, where the allowed background field does
not vanish as space is made infinite.

In the confined phase of a gauge theory there
should not be any long-range fields corresponding
to massless particles. Based on the lattice gauge
theories, it has been conjectured that electric
fields will form themselves into flux tubes, vor-
tices of finite transverse size carxying an amount
of flux as would be produced by a particle in the
fundamental representation of the gauge group '3

For the SU(2) theory considered here, this funda-
mental unit of charge is e/2.

Assuming this formation of flux tubes to be a
correct qualitative desex iption of the confined
phase„we conjecture that a nonvanishing 9 corre-
sponds to a uniform backgx'ound density of flux
tubes. Consider a single such tube parallel to the
x, axis in our world of radius 3 and let the electric
flux in this tube point in the third isotopic direc-
tion. Thus, assume that E", (t) has the form

E", (x) = 6„6"Z(x„x,) . (6.8)

Since the net flux has value e/2, we require

8
dx, dx, Z(x„x,)= 2.

Inserting this into Eq. (6.1) gives

~2+X' '~
T = exp -2gg I— g2., t

where x, and g, ar'e the coordinates of the center
of the flox tube. Thus a density of one flux tube
per universe can, depending on its position„give
any value of 8. Again we conclude that the value
of 6I has no microscopic physical consequences.

We have presented a criterion for confinement
in terms of the symmetry properties of the tem-
poral- gauge vacuum under time-independent gauge
transformations. From this we conclude that in
non-Abelian gauge theories possessing topolog-
ically nontrivial gauge transformations the uncon-
fined phase will possess a corresponding discrete
syrpmetry in the physical Hilbert space. In the
confined phase this becomes a continuous sym-
metry. Unfortunately our discussion sheds no
light on the existence of an unconfined phase for
non-Abelian theories. If this topological vacuum
structure is related to confinement, the connection
must be more subtle than the essentially kinematic
ar guments given here. '4

We have implicitly assumed that the gauge theo-
ries under consideration have no more than two
phases: confined Rnd unconfined. However, re-
normallzahon- group arguments suggest thRt noll-
Abelian gauge theories have most likely an odd
number of phases. ~ Thus if an unconfined phase
exists for such R theory, there are probably still
other phases. What characterizes them~ Cex'tainly
the simplest and most desirable situation is for
four-dimensional non-Abelian theories to possess
only the confined phase.

We have worked in the temporal gauge. As the
canonical quantization of gauge fields is gauge
dependent, our conclusions may differ in other
gauges. Previous discussions of the photon as a
Goldstone boson have been primarily given in the
Lox'entz gauge 8~@p =0. This gRuge requix'es Rn

indefinite- metric space containing several parallel
and equivalent physical Hilbert spaces. Gauge
transformations shift between these equivalent
physical spaces; thus, our interpretation of topo-
logy-changing transfox'mations as a symmetry of
the physical space would undoubtedly change. " In
an axial gauge such as A.3 =0 the topological struc-
ture of the theory must all reside in the proper-
ties of A„on the boundary of space."

Except with the Schwinger model, we have ig-
nor'ed couplings of fermions to the gauge fields.
We feel that lf confinement does occur it should
be signaled by the pure gauge sector of the theory.
Massless fermions do have dramatic consequences
for the tunneling process because, as discussed
in Refs. 8 and 17, the tunneling will be accompanied
with the creation of zero-momentum fermions. The
consequences of this for chiral invariance have
been extensively discnssed in these references.
We have also ignored the fact that e must be x'e-

normalized; we feel that ultraviolet problems
should be irrelevant to the global structure of the
theory.
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It would be desirable to have IQore rigorous
arguments than those of the preceding section on

the physical relevance of the variable 8. Indeed,
if we are wrong and 9 has microscopic conse-
quences, then we are faced with the puzzling ques-
tion as to why such a parameter does not arise
naturally in the lattice formulations of gauge the-
Ol y.

sider the transfor mation

A; -A; + a~A(x ),

which is generated by the unitary operator

U=exp i d'xE,- ~,.A t. ""'

(Al)

APPENDIX A

In this appendix the behavior of the Abelian vacu-
um under gauge transformations is analyzed. Con-

where an infrared cutoff has been introduced in
the exponent. In order to study its effect on the
vacuum, we calculate the expectation value of U,
which can be readily reduced to

&0]U]0) =exp d'xd'ys, A(x)&;A(y)Ae(x y)e—' ~" '~ '

A,,(x) =&0]E,(x)E,(0) ]O) =-(V'6,, —W, V)f(x)

with

d P;],.„ I
(2 )'2u, '

Thus after two integrations by parts,
~4

&0]U]0) =exp —,d'rd'y=--, (x ~ y6;,. —x~y;)&~A(x)S,A(y)e ' '" '~ '
2r' x —y)'

For A as in Eq (2.29.) this integral can be evaluated exactly and gives the result in Eq. (2.33). Now con-
sider A(x) of Eq. (2.36)

A(x) =Ax, /(x'+p')'~'.

The calculation is somewhat more complicated. Equation (A6) reduces to

(AB)

2 A.
~

&0]U]0) =exp

of e and doing the angular integrations yields

dy 8
]

2
( )2]~y~ ]. ~

( )2pi~ xy(x +y )ln
( )2

4x y
)
. (A9)

In the limit of vanishing e the integral remains
well defined and can be done numerically to give

&O~U~O) =exp(-i'~ 0.66. . .).
In general, by dimensional arguments, if

A(x)

then

(All)

where C is some positive constant.

APPENDIX 8

Here we derive the operator U in Eq. (3.3l) that
implements SU(2) gauge transformations. Intro-
duce a parameter s that runs from 0 to 1 consider

1

g(x, s) =exp is —- ~ (x)

We want a U(s) satisfying

U(s)A;U '(s) =g(s)A;g '(s) + —[B,.g(s)]g '(s)

(B2)
%'e look for U of the form
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U(s) = e"o,

where Q is to be determined. Differentiating Eq.
(82) with respect to s gives

[iQ, UA;U ']=g —~
&o, A; g '

+ —, ~ ([s;g(s)]g '(s))2 d

=g[iQ, A;]g '.

[Q, A; ] = —(S,u —ee"s&A;s(u&) .

Although (d is not a dynamical field, we formally
write this in the simpler form

(B10)

We require that U also generate the correct gauge
transformation on E;. . A similar argument to the
above implies

This can be rewritten [Q, E; ] =ie s~(usEf (Bl1)

2,&;,~ —,
l,
z '

~, It'el~ '|Ia)
i (, I d

From the canonical commutation relations we find
an operator that yields Eqs. (B10) and (Bll)

q d3+gCX D C (B12}

The last term is worked out by noting that for any
function f(s)

This is unique up to an irrelevant arbitxary con-
stant that we drop. Thus we find

d df(s)= d f(s+e)ds &=0

This gives

d, ([& g(s}lg '(s))

=
d, (s [g( )g( )]g '( )g '( )j

=g(» „, ([sag(e}]g '(e)3g '(s)

(B6} U(s) =exp —— d'xE; (D;&u)

Setting s to unity gives Eq. (3.31).

APPENDIX C

Here we construct a coordinate q conjugate to
the topology-changing transformation in Eq. (3.39).
The number of times an arbitrary mapping g(x)
covers the group SU(2} is given by" Eq. (3.34).
For the g(x) in Eq. (3.3V) this integral has the val-
ue one. We wish to construct out of the dynamical
variables 4; an operatox' g with the property

=g (s)i —~ s . ug '(s)

Equation (B5) now becomes

& ~ v 2 (X

[Q, A;]=,A; + ——~ a (u (BB)

TQT =@+1.

Using

TA, T '=gA;q '+ —8;gg ',

(C 1)

(C2)

which is equivalent to

3
T[e»Tr(A, A&A„)]T '=e;»Tr A;A&A~+3 —A;A&g 's„g+3 —A,g '&&gg 's~g+ — egg 'egg 's~g ' (C3}8 8 8

22 2
T[e» Tr(A, s,A, )]T '= e;„Tr A,.s,A-, +~Ag-'s„g+3 —A, g-~egg-'s, g+ —s, A,g 'gg+ — egg 's,gg ' , sg'g.

Taking the appropriate combination of Eqs. (C3) and (C4) to cancel the cross terms yields

(C4)

2A. A~g~ —3 —A-g~A~ g ~ = ~-~„Tr 2g.A.A~-3 —A.&~~~ — — e.
~I, Tr ~.~g '~~gg B~gg '

2
2

—3 — s,[e„,Tr(Ag 's,g}].

Integrating over space and using Eq. (3.34), we obtain
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se 3~ &E fkTr 2A AjAk 3 A ~yAk T24@' 4fk

So

e' I" 8

se'
3d'xeokTr 2A; AfA, -3 —A, BPAk +1. C624@' sjk g f k

(cv)

is the coordinate being sought.
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